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A B S T R A C T

Motor imagery (MI) is the predominant control paradigm for brain-computer interfaces
(BCIs). After sufficient effort is invested to the training, the accuracy of commands
mediated by mental imagery of bodily movements grows to a satisfactory level. How-
ever, many issues with the MI-BCIs persist; e.g., low bit transfer rate, BCI illiteracy,
sub-optimal training procedure. Especially the training process for the MI-BCIs re-
quires improvements. Currently, the training has an inappropriate form, resulting in a
high mental and temporal demand on the users (weeks of training are required for the
control). This study aims at addressing the issues with the MI-BCI training. To sup-
port the learning process, an embodied training environment was created. Participants
were placed into a virtual reality environment observed from a first-person view of a
human-like avatar, and their rehearsal of MI actions was reflected by the corresponding
movements performed by the avatar. Leveraging extension of the sense of ownership,
agency, and self-location towards a non-body object (principles known from the rub-
ber hand illusion and the body transfer illusions) has already been proven to help in
producing stronger EEG correlates of MI. These principles were used to facilitate the
MI-BCI training process for the first time. Performance of 30 healthy participants after
two sessions of training was measured using an on-line BCI scenario. The group trained
using our embodied VR environment gained significantly higher average accuracy for
BCI actions (58.3%) than the control group, trained with a standard MI-BCI training
protocol (52.9%).

c© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Brain-computer interface (BCI), or brain-machine interface,
is a system that records user’s intents on the central nervous sys-
tem (CNS) level and translates them for the purposes of control-
ling a computer [1]. Contrary to other input devices, BCIs do
not require any muscle operation from the users. Current BCI
systems can be helpful to people with a severe case of paralysis
(e.g., locked-in syndrome) or rehabilitating after a stroke [2].
The most widespread devices that communicate directly with
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the brain are the neural prosthetics [3], with a well-known ex-
ample being the cochlear implant, a hearing restoration tool.

Current research has limited knowledge about the inner struc-
ture and function of the human brain to create a universal BCI.
Nevertheless, working examples of direct brain communication
built using the current knowledge and technology exist, slowly
taking the first steps out of research labs. One of the most pop-
ular BCI paradigms requires users to consciously replay bodily
motor actions. This paradigm is commonly known as motor im-
agery (MI) [4]. MI-mediated control is dependent on the pre-
viously acquired skills, and users need to perform specialized
training (spanning from tens of minutes to weeks, depending
on the desired level of control) before they can use MI-BCI as
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Fig. 1. Comparison of MI-BCI training environments. Left top – example of the Graz training paradigm with symbolic instructions (indicating the
user should perform right hand MI), left bottom – feedback in Graz training (indicating detected right hand MI). Right – our embodied VR training
environment. Participants try to move the virtual hands by using MI of left and right hand.

a machine control interface [4]. During the training, a feedback
loop is created, providing trainees with information about their
neural activity. BCI trainees try to exploit this neurofeedback
to find reliable mental strategies for MI. Co-adaptation between
the user and the machine develops, i.e., the user gradually learns
the mental strategies that create brain signals recognizable by
the system, and the system learns to recognize the signals com-
ing from the user [5].

Despite advances in the data processing and classification al-
gorithms used in the BCI pipeline, the role of the human partic-
ipant in the BCI training process was not studied to a sufficient
level [6]. In case of MI-BCI, participants need to learn how to
modulate their neural rhythms to grasp the control, but that is
not a simple task. Common problem occurs, when the partici-
pants fail to produce adequately distinct neural patterns on the
brain level, the algorithms can not efficiently extract their in-
tents [7]. Although the chosen brain-imaging technology and
its configuration influence the properties of input data in the
BCI systems (e.g., by changing the density of sensor mon-
tage), the current MI-BCI systems still require the human par-
ticipant to produce distinct neural patterns to correctly classify
the data [8]. BCI research needs to address the issues with the
training process to provide BCI users with an optimal training
procedure.

Training in MI-BCIs requires the users to consciously re-play
motor actions without actually executing them. This rather un-
natural activity can be highly demanding when performed for
prolonged periods of time [7]. Neurofeedback during the train-
ing is usually mediated by simple symbolic representation (an
example of Openvibe [9] implementation is displayed in Fig-
ure 1, left). Although the feedback is necessary part of the MI-
BCI training, so the trainees can be provided with the informa-
tion relevant to the progress of the skill acquisition, feedback
of inappropriate form can lead to distractions from the training

task [7].
In this study, the MI-BCI training process was implemented

in an immersive virtual reality (VR) environment. VR allows
having a more natural feedback: a human body carrying out
the expected motor actions. This was achieved by creating a
realistic 3D environment centered around a human-like avatar
performing movements in accordance to users’ advances in the
MI skills, effectively creating a neurofeedback loop encoded to
mimic the actual human motor actions (see Figure 1, right).

There are more benefits in transferring the training process
into VR. According to [10], people can build a sense of owner-
ship towards an avatar body in VR. Illusion of owning a foreign
body part was firstly described outside VR, in an experiment
known as the rubber hand illusion (RHI) [11]. In the RHI, cor-
related visuo-tactile stimulation (participant observes an exper-
imenter touching a plastic hand in an anatomically congruent
position, while the participant’s hidden hand is touched in syn-
chrony) leads to building of the sense of ownership towards the
hand (this is discussed further in Section 2).

Similar illusion was created using the MI-BCI with the feed-
back delivered using human-like hands in VR [12]. If partic-
ipants can build a sense of “belonging” to virtual hands dur-
ing MI-BCI training, training feedback delivered through their
movements could be accepted more naturally. Indeed, Braun
et al. (2016) [13] studied an embodied neurofeedback using
human-like robotic hand models moving in accordance with the
participants’ imageries, and demonstrated benefits of this type
of feedback (compared to the control conditions).

Participants took part in two phases of MI-BCI training in
this study. The first training phase comprised of conscious MI
during observation of the motor actions performed by the avatar
in VR. This phase served as a data generator for the feedback
in the next stage, and it also facilitated the process of becom-
ing embodied into the avatar’s body. In the second phase, par-



Author’s Postprint / Computers & Graphics (2018) 3

ticipants received an embodied feedback reflecting successful-
ness of their MI actions, encoded into the avatar’s hand move-
ments. After the training was finished, the participants were
evaluated using on-line BCI scenario similar to the feedback
training phase. In the evaluation, participants were in the direct
control of the avatar’s actions.

The main purpose of the current study was to develop an
MI-BCI training environment leveraging the principles of em-
bodiment, which would make the training process shorter and
less tiring. This should, in turn, help the MI-BCI adoption and
usability. Our hypothesis is that the embodied MI-BCI feed-
back would help to accept the training process, compared to
the control group trained with a standard training protocol with
the symbolic feedback (proposed by Graz BCI group [4]). Our
assumptions are based on the past literature [13, 14, 15, 16],
including our preceding study that examined efficiency of an
MI-BCI system with motor action observation during the train-
ing, evaluated using a simple maze game [17] (details on this
work are provided in Section 2.1).

Results from the current study indicate positive effect of the
embodied training environment, in line with our hypothesis.
Participants in the experimental group performed significantly
better in the on-line evaluation task and also gained higher clas-
sification accuracy. The proposed VR training environment was
accepted positively in the qualitative comments of participants.
Moreover, the participants who became embodied into the body
of the avatar reported lower levels of frustration from the task.

2. Background

Multiple definitions of the sense of embodiment exist. In
this paper, we adapted the terminology from work of Kilteni et
al. (2012) [18], where the sense of embodiment is used “to refer
to the ensemble of sensations that arise in conjunction with be-
ing inside, having, and controlling a body especially in relation
to virtual reality applications”. This term is broken down to the
three underlying components; the sense of self-location (expe-
rience of having a determinate volume in the space where one’s
body is located), the sense of ownership (SoO), and the sense
of agency (SoA). SoO refers to the feeling that a body (or its
part) belongs to the person, while the SoA refers to recognizing
oneself as the agent of some behavior. In other words, sense
that one is voluntarily causing the action [19]. Put together,
the sense of embodiment towards a body is reached when the
properties of that body are being processed in the same man-
ner as if they were properties of the own body [18]. This also
works for the body parts. In the RHI, the sense of embodi-
ment is extended to incorporate a non-body object: the rubber
hand [11]. The rubber hand must be placed in an anatomically
plausible position, then both hands (real and rubber) are stroked
by a paintbrush. Participant watches only the rubber hand while
feels the touch in synchrony, which leads to incorporation of the
rubber hand into own body frame. However, the original RHI
experiment is only a SoO illusion. In a later experiment with
a moving rubber hand, it was shown that the SoO and the SoA
are distinct mechanisms; the illusion of owning a hand does not
necessarily need to correlate with the illusion of being in control
of the hand [20].

There are many studies examining or using the RHI as a part
of the design. Experiments showed that the RHI can be repli-
cated without a rubber hand, but using VR or augmented real-
ity (AR) instead [21, 22]. A variation of the RHI with visuo-
motor synchrony was created in VR using hand tracking sys-
tems [10, 23, 24, 25]. This “virtual hand illusion” succeeds in
producing the sense of embodiment toward a virtual limb, sim-
ilarly as the original RHI does. Seeing an anatomically plau-
sible hand (sense of self-location) executing motor actions in
accordance with the participant’s motor commands can create
the illusion that the virtual hand belongs to the participant (the
SoO), as well as that it obeys participant’s intended actions (the
SoA).

The RHI has many bodily correlates, some of which have
been used to assess the strength of the illusion on an objec-
tive scale; proprioceptive drift [11] (the difference between the
actual and perceived position of the stimulated hand), skin con-
ductance change upon threat to the rubber hand [26], or neural
activity in various brain regions [27]. There are studies exam-
ining the relationship between temperature of the participant’s
hand and subjective effects of the illusion, suggesting that the
subjective RHI effects correlate negatively with the hand tem-
perature [28, 29], while other studies fail to replicate this find-
ing [30, 31]. Especially in [31], evidence from 5 experiments
with the total of 167 participants argues against the hypothesis
that the temperature drop is causal correlate of the RHI effects.
In our study, we measured participants’ hand temperatures to
obtain a complementarily measure to the questionnaires. Pro-
prioceptive drift cannot be measured in the virtual hand illusion
(ideally, participants’ hands have the same position as the vir-
tual hands), threat to the virtual hands could negatively affect
the training procedure, and neurophysiological correlates of the
body ownership overlap with the correlates of MI [32].

Neurophysiological correlates of the SoA were proposed in
the recent work of Jeunet et al. (2018) [33]. In their study,
three distinct components of SoA were identified and manip-
ulated separately. Resulting differences in recorded neural os-
cillations suggest there indeed are usable EEG correlates of the
SoA. Specifically, differences were found in channels over the
left fronto-central and parietal cortices, and the right temporal
cortex. These findings were not available in the time of prepa-
rations of our experiment, and so the selected EEG channel set-
up does not allow to look for these correlates in our data. SoA
questionnaire was used instead, its questions were adapted from
the previous RHI study [34].

The cornerstone of the current BCIs is predominantly the
electroencephalography (EEG) [8]. Despite being susceptible
to the noise (both environmental and bodily), EEG is a popu-
lar choice for BCI systems due to its small size, low price, and
a satisfactory temporal resolution, allowing the data retrieval
process in millisecond steps [35]. The MI paradigm in brain-
computer interfacing leverages the similarity between activa-
tions of the brain areas during imagery and actual execution
of the motor actions. The most popular choice of imagined
movements during MI are the left and right hand movements.
In terms of EEG, MI of a hand is manifested as contralateral
event-related desynchronization (ERD) of mu and beta rhythms
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over the motor cortex [36]. Participants’ task during the train-
ing for two classes of MI (i.e., motor actions using two distinct
body parts) is to adapt the two mental strategies regarding the
MI in such a manner that the recorded task-related neuronal
oscillations become separable by the classification algorithm.
Neurofeedback helps to facilitate this process. In neurofeed-
back, participants are being notified about correlates of their
neuronal activity in such a way, that it can be enhanced in the
task-specific manner [37]. In the case of training for MI-BCIs,
the ERDs of participants are typically strengthened [38]. How-
ever, this process is disguised in an appropriate form of feed-
back, and the participants are generally not aware of the details
in changes of their neural oscillations.

Standard MI-BCI training is composed of a sequence of dis-
tinct trials. The progress of a standard Graz MI training trial
is as follows. Firstly, a cross is displayed on the screen to in-
dicate the beginning of a trial and to fixate the eye position.
After 3 seconds, either left or right arrow appears on the screen
(Figure 1 left, top), representing the hand for MI rehearsal in
the given trial. In case the feedback is delivered, it replaces
the arrow on the fixation cross (1.25 seconds after the arrow is
shown). Feedback usually has a form of an extending bar show-
ing the classifier decision in the real-time, while the length of
the bar indicates the confidence of the classifier [39] (Figure 1
left, bottom). The training run consists usually of 10-20 trials
per class, 20 trial run lasts approximately 7.5 minutes.

Perez-Marcos, Slater, and Sanchez-Vives (2009) [12] were
the first to describe the virtual hand illusion mediated by MI-
BCI with synchronized visual feedback. A SoO towards a VR
hand was induced in the participants performing MI while the
virtual hand carried out their imagined motor action in syn-
chrony (measured using questionnaires). High SoO for human-
like robot hands was induced using MI-BCI (measured using
skin conductance response after a painful stimulus towards the
non-body hand; and questionnaires) compared to the control
group in [40]. In the follow up experiment, Alimardani et al.
(2016) [41] compared motion tracking and MI-BCI for the con-
trol of a human-like robot. The results (measured again using
both skin conductance and questionnaires) suggest that MI-BCI
control brings a stronger SoO towards the robot than the motion
tracking control. The illusion of owning the robot’s body did
not shatter even after introducing a delay to the system. This
is in contrast with the older findings on the RHI, where intro-
ducing delays above 600 milliseconds strongly attenuated the
illusion [42], suggesting that the BCI control can tolerate some
delay and still allows the users to maintain the SoO.

On the other hand, SoA for BCI-mediated actions is weak-
ened with delays, as well as with other discrepancies be-
tween the imagery and the outcome, similarly to the bodily ac-
tions [43]. The study argues that BCI-mediated actions rely on
similar multisensory integration mechanisms as motor actions
do. A difference in BCIs is that participants still maintain SoA
on a high level, even when the visual feedback is incorrect, on
condition that the participant cannot operate the BCI to a suf-
ficient level. This evidence suggests that the visual feedback
dominates the SoA in the MI-BCI-mediated control [43]. This
is in line with another study [44], showing that participants feel

the SoO and the SoA towards a virtual hand, which they think is
controlled by an MI-BCI, but in fact, there is no causal link be-
tween their mental efforts and the observed hand movements.
In this case, the hands simply executed the motor actions re-
quired from the participant with 80% probability, imitating the
expected accuracy of true BCI actions.

Those studies examining SoA and SoO in BCI-mediated ac-
tions however performed the training process using the stan-
dard protocol. Braun et al. (2016) [13] conducted an experiment
where the training feedback was delivered by means of anthro-
pomorphic robotic hands performing the movement. Similarly
to the RHI, participants’ hands were kept out of sight, and sim-
ilarly to the virtual hand illusion, the robotic hands were act-
ing in synchrony with the participants’ MI. SoO and SoA were
measured using questionnaires and by means of the electroder-
mal activity after threat to the robotic hand. The validity of
embodied feedback was tested by contrasting an anatomically
plausible and implausible (the robotic hands rotated by 180◦)
condition. According to their results, 71% of the participants
maintained a SoO towards the robotic hands. The experimental
condition with the hand placed anatomically correctly produced
faster detection of the intent by the classifier and slightly higher
classification accuracy, together with stronger ERDs elicited by
the participants (compared to the control group). Another study
(performing part of the MI training using embodied environ-
ment) showed that the MI skills learned during the training with
embodied feedback (using human-like hands) last longer than
the skills learned during the feedback mediated by non-human
body parts [14].

Additional support for the MI-BCI training, especially dur-
ing its first stage (performed usually without the feedback), can
be arranged using animations of the motor actions, displayed
together with the participants MI. The fact that the human pri-
mary motor cortex is activated also during a motor action ob-
servation was first observed in 1998 [45]. In terms of BCI,
this was further studied by Kondo et al. (2015) [15]. They
showed video clips of grasping hands to the experimental group
performing MI-BCI training, while still hands and a red/green
cross were showed to the controls. Stronger ERDs were re-
vealed in the group trained with movement compared to the
control group. Similar results were obtained using a 3D visu-
alization of the limb movements during MI tasks [16]. On the
other hand, studies disproving hypothesis about strengthened
ERD during motor action observation can be found as well. Ne-
uper et al. (2009) [46] did not find a difference between a group
of participants receiving symbolic feedback during training and
the group instructed by videos with a hand grasping movement.
Both groups showed comparably strengthened ERD in follow-
ing feedback session, compared to the initial training.

2.1. Previous study - MI game
Current research presented in this paper is a follow-up on

our study with an MI-BCI-controlled game [17]. Participants
(N=34) were randomly assigned to one of the two following
groups; either trained for MI-BCI using standard protocol with
arrows (Openvibe implementation of Graz MI training) – group
Arrows, or trained with a motor action observation-based train-
ing using videos of an actor raising his left/right hand (delivered
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Fig. 2. Training in MI game study: a) motion observation based training
(Video), b) symbolic training (Arrows).

on a 2D computer screen; see Figure 2). The training run took
7.5 minutes (20 trials per class), and the timing was identical
for both groups. Only one training run was performed with the
participants, and no feedback was delivered during the training
session. The study was designed to show differences between
the training with a help of motor action observation and the
control group receiving the standard training protocol. For the
evaluation purposes, a simple maze game was developed (see
Figure 3). Participants were given three different levels of the
game (with an increasing complexity), and were instructed to
navigate the ball to the target in the shortest time possible (using
the MI of left and right hand). Demographic data were collected
as well, to reveal other factors influencing participants’ perfor-
mance (specifically the effect of gender was examined during
the study). Subjective statements regarding the training and the
game were collected using a set of questionnaires. Apart from
the analysis of the band powers in the common EEG bands (al-
pha: 8-12 Hz, beta: 12-30 Hz, gamma: 25-90 Hz, delta: 1-
3 Hz, theta: 4-7 Hz), engagement index (EI), an EEG correlate
of engagement in the task [47], was computed (using band pow-
ers of beta/(alpha+theta) at Cz, Pz, P3, and P4 electrode loca-
tions). The EI has been used mostly in passive BCI design in the
past [47, 48], and its role in prediction of MI-BCI performance
is yet to be established.

The study failed to show an effect of the training modal-
ity (Video, Arrows) on the accuracy of the BCI actions (mea-
sured using the time needed to complete the game and cross-
validation accuracy on the training set). We hypothesize that the
evaluation task (moving the ball through the maze) was overly
different from the MI training task to produce quality results af-
ter one run of training. Firstly, participants were not allowed to
practice the MI skills sufficiently before the evaluation (produc-
ing sub-optimal results overall); and secondly, the act of motor
action observation could have negatively affected the training,
as participants were not allowed to create their own representa-
tion of imagined movements. For further studies, it was decided
to use more training time and to incorporate feedback training.

Hour of the day had an effect on the EI (MANOVA
F(6,25) = 4.08, p < 0.05, η2 = 0.49). At 3 PM, the engage-
ment of the participants was significantly higher (mean = 0.99,
SD = 1.22) compared to the other hours of the day (for each
12 PM, 2 PM, 4 PM, 5 PM, 6 PM, 7 PM the mean was bellow
0.13). However, the experimental sessions did not take place in
the morning hours and the sample size of 34 participants was

Fig. 3. Participant evaluation using game (MI game study).

too small to assess the effect of the hour with confidence. We
further examine the effect of the hour of the day in this paper,
including the performance in the morning.

Gender did not have an effect to the evaluation results (cross-
validation classification accuracy, game completion time). A
difference was observed in the band power of all bands except
for gamma, but this did not influence the EI significantly. Fe-
male participants reported stronger concentration on the task
(Mann-Whitney U = 73.50, p < 0.05). In a separate analysis
of the differences in a training group (using Mann-Whitney U
test), female participants in the Arrows group rated the ques-
tionnaire metrics “How natural was the mechanism which con-
trolled movement?” (U = 13.50, p < 0.05) and “Loss of self-
consciousness” (U = 14, p < 0.05) higher (compared to Video
group). Loss of self-consciousness in the Arrows group was
more prominent in male participants as well (U = 91, p < 0.05).

Qualitative results (gathered in the last part of each experi-
mental session) indicate frequent problems in understanding of
the Arrows training. This happened despite the fact that the par-
ticipants were explained the protocol thoroughly, and were left
to try out the required MI (with the training instruction context)
before the actual training began. Some of the participants did
not manage to transfer the skills from the training phase to the
evaluation phase (game). They often described concentration
on the ball, in the sense of trying to make it move with arbitrary
efforts, rather than by using kinaesthetic MI (imagining the feel-
ing accompanied with the motor task performance [49]). Also,
this issue was closely connected to the level of motivation dur-
ing training and in the game. Some participants reported signif-
icant drop in the levels of motivation when the game outcome
did not go as they expected.

The focus of the current study is on the training part of the
MI-BCI procedure and its facilitation, using the embodied VR
feedback.
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3. Materials and methods

3.1. Participants

Thirty-six healthy participants were recruited for this study,
and randomly assigned either to the experimental or to the con-
trol group. All the participants gave their informed consent.
Five participants had to be excluded due to the technical issues
during the EEG recording (either extensive artifacts in the data,
or dead electrodes), and one participant failed to follow the in-
structions. Thus, total of 30 participants (10 female) were eli-
gible for the analysis. None of the participants was aware that
the purpose of the study was to examine the effect of VR em-
bodiment on MI-BCI training, and did not have previous expe-
rience with BCIs. Four participants were left-handed (two per
group), the rest of the sample consisted of right-handed partici-
pants. Participants were asked to attend one, approximately 90
minute long session, and participated voluntarily to the exper-
iment. The study was approved by the Research Ethics Com-
mittee of Masaryk University with the reference number EKV-
2016-057.

3.2. Apparatus

EEG data were collected using a lightweight wireless EEG
device Enobio 32 [50] (the device can be seen in Figure 3) and
transferred wirelessly to the computer running Openvibe [9].
Channel set-up was centered around the scalp area correspond-
ing to the motor cortex, with 20 channels used in total. In par-
ticular, channels C3, C1, Cz, C2, C4, F7, Fz, F8, P3, F3, FC5,
FC1, CP5, CP1, CP2, CP6, F4, FC2, FC6, and P4 were used
in the set-up (scalp positions of the channels are visualized in
Figure 4). EEG data were recorded with a sampling frequency
of 500 Hz and referenced using Common Mode Sense/Driven
Right Leg (CMS/DRL) electrode pair located on the right ear-
lobe.

The VR scene was developed using Unity game engine (ver-
sion 2017.1.0f3) [51]. For the delivery of the 3D scene, we
used a state-of-the-art head mounted display (HMD) Oculus
Rift CV1 (resolution 1080x1200 per eye, 90 Hz refresh rate,
110◦ field of view, rotational and positional tracking [52]). We
tried to make sure that the EEG sensors are not affected by the
HMD montage. Channels F7 and F8 received a pressure from
the HMD plastic frame, but the rest of the electrodes were not
touching the scaffold of the HMD. In-experiment signal moni-
toring and post-experiment signal check were used to ensure a
satisfactory signal quality without extensive artifacts.

The hand motions of the avatar in the VR scene were
recorded from a performance of an actor using OptiTrack full-
body motion capture system [53], the avatar models were down-
loaded for free from the webpage Mixamo [54], the used mod-
els are available under the names Stefani and Jimmy.

Temperature of the hands was measured using a contactless
infrared digital thermometer (Cemio Metric 308 SMART). Site
of the measurements was located on the back of the hand, prior
the thumbs. Changes of the temperature of both hands (end of
phase temperature - start of phase temperature) were used in the
analysis.

Fig. 4. Scalp positions of the used EEG channels. Adapted from [55].

3.3. Setting and VR scene

During the experimental session, participants sat in a dimly
lit room with their hands resting on a desk (in accordance with
the avatar posture), and were disallowed any movements during
the MI periods; specifically eye movements, blinking, swallow-
ing, and hand muscle contraction during MI trials were high-
lighted in the instructions (movement was permitted during the
rest periods between the MI trials). Regarding the instructions
for the MI, the process of kinaesthetic MI was explained to the
participants, as kinaesthetic MI has been shown to be more effi-
cient than the visual MI for the purposes of controlling an MI-
BCI [56]. Session consisted of three phases in the VR environ-
ment (for the experimental group) where participants rehearsed
MI of the left and the right hand. Setting of the VR scene re-
mained unchanged for all of the phases. Central element of the
scene was a human-like gender-matched avatar sitting behind a
desk with its hands laid on the tabletop. A red button was lo-
cated ahead of the participant, approximately in the height of
the eyeline. The avatar was programmed to push this button
using its left and right hand. As the movements were recorded
using motion tracking system, they were performed naturally –
first the whole arm was lifted from the tabletop, then the palm
and fingers pushed towards the button, and the movement fin-
ished with the hand being put back on the table to the initial
pose.

The scene contained also a TV screen located on the front
wall. Its purpose was to display the instructions (details are
provided in the next subsection) and progress of the experimen-
tal task. The remaining elements in the scene did not play any
active role in the experiment, their purpose was to strengthen
the immersion in the scene by creating a more trustworthy en-
vironment. Participants were watching this scene from the first-
person view of the avatar (displayed in Figure 1, right).
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Fig. 5. Visual progress of an MI trial in the VR. Field of view provided by the HMD allowed participants to see the scene to a better extent.

3.4. Experimental procedure

The experiment had three phases: training, feedback training,
and evaluation. Demo of the virtual scene was shown to the
participants before the first phase. That means, the participants
were shown the virtual scene (in HMD), but in the operation
mode without the input from the BCI. After the participants
took off the HMD, they were asked to perform conscious motor
execution and MI of the avatar’s movement, to gain grasp of
the task before the actual training began (this is referred to as
“pre-training” in literature [7]).

The training phase consisted of observation of the virtual
avatar pushing the button, while participants’ task was to syn-
chronize their MI with the avatar movements. Combined MI
and motor action observation is known to facilitate stronger
ERD production in participants, compared to MI alone. More-
over, the participants had a chance to be acquainted with the vir-
tual avatar’s body, and to subconsciously incorporate the body
and its actions into own body frame (the embodiment illusion).

In the feedback phase, participants also performed MI, but
the classifier output controlled speed of the hand movements in
the VR scene. When the classification result matched the cur-
rently prescribed task (left/right hand MI), the button-pressing
movement performed by the avatar was carried out with the
original speed. In case of being classified as the wrong class,
the movements were slowed down (to a threshold value of a
quarter of the original speed). The movement served as the
feedback for the participant. It did not stop completely at any
point, to keep the training pace stable, and to maintain moti-
vation in the participants. Participants were informed that the
speed of the movements correlate with their results, but does not
stop. Consequently, the hand movement was finished to its en-
tirety regardless of the performance in the trial. This approach
was selected also to support participant motivation, as well as to
prevent confusion during the training. All the trials were used
for the classifier training, no matter if the participant’s perfor-
mance was good or bad in the trial. If the hand movements had
not been completed after each trial, the different visual form of

the closing of each trial could have affected the training proce-
dure.

The evaluation phase had a progression similar to the feed-
back phase, but the hand movement did stop completely if the
participant was unable to switch into the required mental state,
as recognized by the classifier. Thus, the movement performed
by the virtual hands was conditioned by the participants’ suc-
cessful performance. Participants were given 8 seconds to finish
each trial, then a timeout occurred and the hand movement was
finished. This ensured that the participants had equal conditions
for the evaluation, and it is also consistent with the previous
study on embodied MI-BCI feedback [13].

In each phase, beginning of the MI trial was signaled using a
dot displayed on the TV screen located on the wall. After 1 sec-
ond, the dot was replaced by an arrow indicating which of the
hand movements is to be imagined (this procedure is illustrated
in Figure 5). These symbols also served as the eye fixation
points during the trials; in case there was no symbol displayed,
the rest period was ongoing and the eyes did not need to be fix-
ated. The exact timing of the trials was as follows: 3.5 second
of MI followed by 5-9 seconds of the rest (the exact length of
each rest phase was generated randomly) in the training phase,
and 3.5-8 seconds of MI followed by 7 seconds of the rest for
the feedback and evaluation phase. If the trial was finished ear-
lier, the saved time was converted into extra rest time. Gentler
pace of the training task compared to standard Graz protocol
timings was chosen deliberately to minimize fatigue and stress.
The values for timing of the tasks were based on the previous
studies [37, 13]. Training consisted of twenty randomized MI
trials for each class in the training and feedback phases (40 tri-
als in total), the evaluation phase consisted of randomized 10
trials for each class.

3.4.1. Control group
Participants in the control group performed the former two

phases (training, feedback) without the use of VR. Training in-
structions were delivered using the standard protocol with ar-
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rows, and feedback was displayed as extending blue bar, con-
tinuously changing according to the classifier decision (as dis-
played in Figure 1, left). The evaluation phase took place in
the VR environment. To keep the instructions for both groups
consistent, participants in the control group were shown the
VR scene in the HMD before the training phase commenced.
They were then instructed to mimic the avatar’s movements for
a couple of trials (same as the experimental group), and to per-
form kinaesthetic MI of this movement during the experimental
phases.

Our experimental design deliberately makes use of immer-
sive VR environment for the training purposes and the evalua-
tion task as well; however, that resulted in having different train-
ing and evaluation environments in the control group task. It is
not very common to perform MI-BCI training in a virtual en-
vironment, even in studies having the evaluation task designed
in VR. Commonly, the training is done using the standard pro-
tocol (and standard computer screen), and the following task is
performed in a virtual environment (e.g., [57, 58, 59], for re-
view, see [60]). The design of this study allows to compare
between the two training paradigms. As the purpose was to ex-
amine the effect of embodiment, the evaluation must have been
implemented using immersive VR. However, this choice led to
having two different contexts in the control group, and only one
context in the experimental group. See Section 5 for a discus-
sion on this issue.

3.5. Features and classification

The BCI pipeline was implemented using Openvibe applica-
tion (version 1.3.0) [9]. EEG recordings of the MI trials (3.5
seconds long, starting 0.5 seconds after the instruction) were
processed into feature vectors for the classifier training. For the
feature construction process, firstly, the signal was filtered in
the range 8-30 Hz (using 5th order Butterworth filter). Epochs
with length of 1 second were created from the MI trials, each
1/16th of a second. Band powers of the epochs were com-
puted using Fast Fourier Transform (FFT), and averaged in the
four frequency bands: 8-12 Hz (mu), 12-16 Hz (low beta), 16-
20 Hz (mid-beta), and 21-30 Hz (high beta). Weights for each
of the 20 recorded channels were assessed using Common Spa-
tial Patterns (CSP) algorithm with regularization [61]. Regu-
larized version of CSP with Tikhonov regularization and trace
normalization was applied, 3 filters for each class were com-
puted. Finally, before using the feature vectors for classifier
training, outlier detection and removal was employed, to elim-
inate erroneous frames polluted with high-amplitude artifacts.
Outlier removal was set to prune the feature vectors containing
values outside the quantile range [0.01, 0.99].

For the classification, shrinkage Linear Discriminant Analy-
sis (sLDA) with regular covariance matrix was used. Regular-
ized versions of CSP and LDA were used to lower the amount
of training data needed for classifier training. This technique,
together with the outlier removal, was adapted from the sug-
gestions in work of Lotte (2015) [62] on MI-BCI set-up time
reduction. For each phase, both CSP and sLDA were trained
using the set of feature vectors originating from the immedi-
ately preceding phase.

Fig. 6. High level diagram of the experiment. Participants in the control
group received visual input in the training and feedback training phases
using a standard computer screen instead of the HMD.

3.6. On-line processing

The feedback in VR training (i.e., speed of the avatar’s hand
movement) was controlled by the classification results, which
were tested each 1/16th of a second. Data transfer from Open-
vibe to Unity was implemented using the built-in Virtual Real-
ity Peripheral Network (VRPN) server and Unity Independent
VRPN Adapter (UIVA) [63]. VRPN is a library designed to
help with the process of connecting various VR software and
hardware together. UIVA is the layer that allows Unity to con-
nect to the VRPN server. High level diagram of the data flow
between the components of the experiment is shown at Figure 6.

3.7. Training score computation

On-line accuracy of each participant (score) was computed
during the evaluation phase of the experiment. Score was calcu-
lated for each trial separately. In the trial, it refers to the percent-
age of time the classifier recognized the desired mental pattern
for the current MI task. Scores of individual trials were aver-
aged over the experimental phase. Score was computed in the
VR experimental application, thus in the experimental group, it
is available also for the feedback training phase.

The advantage of computing the scores is that we ob-
tained a practical measure and did not have to rely on the
cross-validation classification accuracy only. However, cross-
validation accuracies of the training sets of each participant en-
tered the analysis as well, Openvibe LDA trainer (with 5-fold
cross-validation test) was used to gather these values.

3.8. EEG data processing

The EEG recording datasets were visually inspected for ar-
tifacts, recordings of unsatisfactory quality led to rejection of
5 participants. ERD of each recording was calculated using
event-related spectral power (ERSP) averaged over the fre-
quency range of interest, i.e. 8-30 Hz. For the purposes of anal-
ysis, channels C3 and C4 were selected to produce two ERD
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Questionnaire
SoA (1) I felt as if I was controlling the movements of the virtual hands.

(3) I felt I was controlling the virtual hand movements by thinking of moving my left or right hand.
SoO (2) I felt as if the virtual hands were my hands.

(4) I felt as if the virtual hands were part of my body.
Proprioception (5) I remained aware of the position of my own hands.
SoA control (6) I felt as if my hands moved whenever the virtual hands were moving.
SoO control (7) Sometimes, I felt as if I had more than two hands.

Interviews
Training (1) Was it easy for you to imagine the given hand movement after the instuction was shown?

(2) Was it easy for you to concentrate on the hand movement that you should have performed?
Feedback (3) Do you think that the feedback helped you?

(4) Was the feedback annoying sometimes?
Evaluation (5) Did you imagine the movement the same way all through the tasks or did your mental strategy change?

Table 1. Questionnaire and interview questions.

courses (for the actual experiment, CSP determined weights of
the channels); C3 for the right hand, C4 for the left hand. The
ERSP (log power) was computed relatively to the baseline of
1500 ms before the set of relevant MI trials (20 trials for each
hand in the each of the training and feedback phases, 10 trials
for each hand in the evaluation), baseline mean value was re-
moved before the computation. These ERD courses were aver-
aged over the trials of each participant, and entered the analysis
as the percentage change of in- versus pre-trial band power.

Grand ERD averages for each condition and group are visual-
ized in Figure 7. We also computed engagement index (EI), the
chosen EI consists from the band powers of beta/(alpha+theta),
calculated from the centro/parietal channels (Cz, P3, P4, CP1,
CP2), in the second half of the task (recording) course [47]. All
the analyses were done using EEGLAB (version 14.1.1) [64]
and MATLAB (version R2015b) [65].

3.9. Questionnaires and interviews

Short interview followed each experimental phase, and two
questionnaires were handed out to the participants before the
end of the experimental session.

NASA Task-Load Index (TLX) was used to assess the cog-
nitive workload of the participants. NASA-TLX consists of 6
questions on 21-point scales; mental demand, physical demand,
temporal demand, performance, effort, and frustration. The sec-
ond questionnaire was designed to examine participants’ SoA
and SoO towards the virtual hands and awareness of the po-
sition of own hands (proprioception) during the VR task (see
Table 1). Answers were positioned on the Likert scale (rang-
ing from -3: total disagreement with the statement, to +3: total
agreement with the statement). Results of the individual ques-
tions were averaged across the following categories; questions
1 and 3 produced the SoA rating, questions 2 and 4 produced
the SoO rating. Proprioception, control statement for SoA, and
control statement for SoO correspond each to one question; 5,
6, 7, respectively. Results from the category of SoO questions
were used to form the group “embodied participants”, specif-
ically, this group contained all the participants who rated the

SoO >= +1. This criterion was adapted from the previous
study [13].

The purpose of the interviews was two-fold. Firstly, answers
to the designed interview questions were gathered (the ques-
tions are present in Table 1). They were aimed at examining the
participant’s self-evaluation of the work with the MI (2 ques-
tions after the training phase), usefulness of the feedback (2
questions after the feedback phase), and changes in the mental
strategy (one question after the evaluation). Secondly, qualita-
tive comments on the experimental phases were collected (qual-
itative comments were gathered also using a written form after
the experiment). The designed questions were assessed on a
reduced Likert scale (with steps: “no”, “rather no”, “unsure”,
“rather yes”, “yes”).

4. Results

Statistical analyses were run on the collected data with the
three main aims:

1. To determine the effects of the group (experimen-
tal/control) and the perceived embodiment (embodied par-
ticipants)

2. To examine the correlations between score, cross-
validation accuracy, and the subjective feedback (question-
naires and interviews)

3. To examine the hour of the day, gender, hand temperature,
and EI effects

Mann-Whitney U test was used to examine the effect of the
group, Spearman correlation (rs) was utilized to find correla-
tions in the data. Significance level of p < 0.05 was chosen.

4.1. Training score

The results showed a higher score for the experimental group,
receiving the embodied VR feedback during the training (group
average 58.30%, SD = 6.38%), compared to the control group
(group average 52.91%, SD = 5.87%). Results from Mann-
Whitney U test revealed a significant difference between the
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scores of the two groups (U = 42, p = 0). Perceived embod-
iment did not have significant effect on the score; embodied
participants gained higher average score (56.97%, compared to
54.24% in the control group), but the difference was not signif-
icant (U = 87, p = 0.29).

The mean score in the feedback phase of the experimental
group was 55.67% (SD = 6.62%). This score predicted the per-
formance in the evaluation phase (Spearman correlation; N=15;
rs = 0.80, p = 0), and the score increased between the feedback
and the evaluation phase of the experimental group in 12 cases.
Drop was observed in two cases, and in one case, the score
stayed unchanged.

4.2. Cross-validation accuracy

The chance level of the cross-validation accuracy in the feed-
back phase was determined using binomial cumulative distri-
bution [66] on a significance level of p < 0.05, and equaled
63.33%. Total of 70% of participants exceeded the chance
level (73.33% in the experimental group, 66.67% in the control
group). Average cross-validation accuracy of the participants
exceeding the chance level equaled 71.30%.

Comparison with the obtained scores provided some addi-
tional insight into the relationship between the cross-validation
accuracy on the training set and the performance in the on-line
task. There were significant correlations between the feedback
phase cross-validation accuracy and the feedback phase score
(computed for the experimental group only; N=15, rs = 0.70,
p = 0), and the cross-validation accuracy in the feedback phase
and the evaluation phase score (for all participants; N=30,
rs = 0.46, p = 0.01). This was true even for the relation-
ship between training phase cross-validation accuracy and score
(rs = 0.43, p = 0.02). Cross-validation accuracy of participants
in the training phase correlated with the feedback phase accu-
racies (rs = 0.47, p=0.01). Nevertheless, all the values for the
cross-validation accuracy were much higher than the follow-up
real performances – score (feedback phase, experimental group
mean = 69.60%, SD = 7.42%; control group mean = 67.13%,
SD = 5.79%).

Difference between cross-validation accuracy of the feed-
back training and the evaluation phases was evaluated as well.
Participants gained higher accuracy in the evaluation than the
feedback training phase overall, but the difference is very small
(3.57% in average, experimental group: 3.87%, control group:
3.27%). Drop of cross-validation accuracy between phases was
observed in 3 cases in the experimental group and 5 cases in the
control group.

4.3. ERD analysis

Analysis showed that all participants in the experimental
group produced ERD in the observed range 8-30 Hz during
the on-line task (based on the average ERD in the experimen-
tal phase), and two participants in the control group failed to
produce ERDs during the evaluation phase. The average ERDs
during the right hand MIs are visualized in Figure 7 (the right
hand ERDs were more prominent than the left hand ones).
Spearman correlation test confirmed the expected (positive)
trends between the ERD strength and the score, even if there

was no significant correlation (rs = 0.27, p = 0.14). Participants
in the experimental group had stronger average ERDs compared
to the controls in all of the experimental phases, but the effect
was not statistically significant in any of the phases (for the
evaluation phase, Mann-Whitney U = 105, p = 0.76). Similarly,
the effect of embodiment on the ERD strength (group “embod-
ied participants”) was not significant (U test for the evaluation
phase; U = 73, p = 0.10), but the average ERD was stronger
for the embodied participants in all of the experimental phases.
Interestingly, gender of the participant had a significant effect
on the ERD strength in the evaluation phase (Mann-Whitney
U = 25, p = 0), with the female participants producing more
prominent ERDs (true for all of the experimental phases). Nev-
ertheless, it is not possible to draw conclusions from this evi-
dence, as the sample was not balanced in terms of the gender
(10 females, 20 males).

4.4. Sense of embodiment

Results for both SoO and SoA statements (positioned on a
scale from -3 to +3) were comparable across the groups. Mean
SoA rating was 1.40 (SD = 1.28) (indicating a positive SoA to-
wards the virtual hands actions), whereas mean SoO was equal
to 0.70 (SD = 1.67) thus near the middle of the scale. SoA
was slightly higher in the experimental group (mean = 1.57,
SD = 0.86) than for the controls (mean = 1.23, SD = 1.61).
Mean SoO was higher for the controls, but with a very low dif-
ference (experimental group mean = 0.63, SD = 1.52; control
group mean = 0.77, SD = 1.86).

The embodied participants group (giving the SoO rating
higher than or equal to +1) consisted of 15 participants, with
the distribution balanced across the groups (7 participants in the
experimental group, 8 participants in the control group). This
suggests that the previous VR experience during the training
did not affect the ratings in the evaluation phase of the exper-
iment. Similar tendency is present for the agency statements.
The ratings equal or higher than +1 were given by 12 and 11
participants for the experimental, control group, respectively.

Mann-Whitney U test between the embodied participants and
the rest of the sample revealed the effect of high embodiment
on two variables: the ratings of SoA (U = 44, p = 0), and the
ratings of frustration (U = 51, p = 0.01). The embodied par-
ticipants felt stronger agency for the movement of the virtual
hands (mean = 2.07, SD = 0.80; non-embodied: mean = 0.73,
SD = 1.35), and they reported less frustration in the end of the
experimental session (NASA-TLX; mean = 2.93, SD = 2.57;
non-embodied: mean = 6.13, SD = 3.87).

Gender had an effect on the SoO statements. Females re-
ported significantly (U = 46.50, p = 0.02) higher ownership
of the virtual hands (mean = 1.70, SD = 1.06) than males
(mean = 0.20, SD = 1.71).

The mean answers for both control questions for SoO and
SoA statements are below zero. The SoO control question was
rated more negatively by the subjects in the experimental group
(-1.80 versus -1.20) and the SoA control question was rated
more negatively by the controls (-1 versus -0.60). However,
negative correlations between SoO and SoA, and their corre-
sponding control questions were not confirmed (SoO and SoO
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Fig. 7. Grand average of the ERD time courses – the experimental (solid blue) versus the control (dotted red) group in each phase of the experiment (top:
training, middle: feedback, bottom: evaluation). The ERDs were calculated by averaging ERSP of the right hand MI over C3 channel and the 8-30 Hz
frequency band for 15 participants and 20 trials (training and feedback) or 10 trials (evaluation). Cues for the MI trials were presented at time = 0, and
epochs from 500 ms to 4000 ms were used to produce the feature vectors.
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control rs = 0.27, p = 0.15; SoA and SoA control rs = 0.04,
p = 0.82).

No significant correlations were present for the score results
and SoO (rs = 0.20, p = 0.30) and SoA (rs = 0.20, p = 0.28)
statements gathered via questionnaires.

4.5. Interviews

No significant between-group differences were found in the
interviews. Non-significant difference was found between the
experimental and the control group answer to the interview
question (1), asking how easy it was to imagine the hand move-
ment during the training. Positive (median “rather yes”) an-
swer was predominant in the experimental group, and nega-
tive (“rather no”) in the control group (U = 73.5, p = 0.10).
Another non-significant difference between the groups was re-
vealed in the questions regarding change of the mental strategy
(U = 75.50, p = 0.09). Participants in the control group reported
change of strategy less (median answer “rather yes”) than par-
ticipants in the experimental group (median answer “yes”).

4.6. Other results

Positive correlation was found between the evaluation phase
EI and score (rs = 0.44, p = 0.02), with no effect of embodiment,
nor selection of the group.

The expected temperature drop was observed in 56.67% par-
ticipants (temperature did not change in 36.67% of partici-
pants). However, the change did not correlate with the SoA
or SoO ratings, nor with the score in the last phase of the exper-
iment.

An effect of the hour of the day was not confirmed in
this study. Although participants scored best in the morning
hours (10 AM-12 PM; mean = 58.40%, SD = 9.43%), com-
pared to the afternoon time slot (2 PM-4 PM; mean = 54.51%,
SD = 5.98%), and the evening (6 PM-8 PM, mean = 54.33%,
SD = 3.95%), the scores did not differ significantly between
those times. However, the data were not balanced across the
time slots.

The qualitative comments gathered in the questionnaires and
during the interview were mostly concerning the symbolic feed-
back, 4 participants claimed it was distractive, and 3 partici-
pants described it as confusing. That implies that out of 15 par-
ticipants receiving this kind of feedback, nearly a half of them
commented on the symbolic feedback negatively. The inter-
views also revealed that some of the participants were having
problems to perform kinaesthetic MI in the first phase of the
experiment, especially those from the control group. Overall,
the acceptance of the experimental session was high (qualita-
tive comments); in terms of the quantitative data, the average
frustration rating was equal to 4.53 (median = 4, SD = 3.62)
out of 21 points (NASA-TLX).

Other results from NASA-TLX indicated positive correlation
between the evaluation phase EI and both self-reported perfor-
mance (rs = 0.39, p = 0.03) and the temporal demand of the task
(rs = 0.39, p = 0.03).

5. Discussion

This study examined the effect of VR embodiment on MI-
BCI training. The traditional MI-BCI Graz training protocol
with a symbolic feedback was compared to a VR training en-
vironment with an embodied feedback, designed for the pur-
poses of this study. Results confirm that the participants who
performed training in the VR environment performed signifi-
cantly better in the final evaluation, compared to the control
group trained with the symbolic instructions. To our knowl-
edge, this is the first study with the aim to directly compare the
common Graz MI-BCI training to a new paradigm leveraging
the principles of embodiment. Previous studies utilized motor
action observation followed by embodied feedback in training,
similarly to this study; however, their focus is on validity of the
embodied feedback. The feedback using human-like body parts
was contrasted to a control condition with incorrect (anatomi-
cally implausible) feedback [13, 40, 14]. Our study goes fur-
ther, trying to prove that a replacement of the traditional MI-
BCI training protocol by an improved one, using meaningful vi-
sual feedback, increases the usability of such MI-BCI (in terms
of performance).

Due to comparison of the two different training procedures
in the experimental and control group, it is not a simple task
to isolate the effect of the VR environment (and embodiment)
on the results. Of most concern is the context of training and
evaluation in each of the groups. To evaluate the effect of dif-
ferent training modalities on the results, we chose to employ
the same modality (VR) for the evaluation of the both groups.
This resulted in difference between contexts in the experimen-
tal and control group. Specifically, the whole task was carried
out in VR for the experimental group, but both standard display
and VR was used in the control group. This could have led to
utilization of different cognitive/neural mechanisms during the
training and evaluation tasks, theoretically leading to worse per-
formance in the evaluation for the control group. We argue that
this effect is probably not very strong, as in most of the cases,
cross-validation accuracy between the last training phase and
the evaluation phase did not change much (the differences are
comparable for both experimental and control group).

Another point that needs to be taken into account is the num-
ber of participants in this study. BCI studies are traditionally
of small-sized samples (see e.g. [12, 13, 23, 59, 46], where the
number of participants is lower than or equal to 25), mainly due
to difficult and time-consuming procedure and relatively high
ratio of discarded participants due to the signal recording is-
sues [67]. In this study, we opted for relatively high number of
participants among the BCI papers. On the other hand, equal
initial conditions of the participants were not ensured, in terms
of MI skills. Random group assignment should alleviate the ef-
fect of disbalanced initial conditions; however, to be sure that
the random assignment eliminates the problem, the sample size
should be higher. This needs to be borne in mind when inter-
preting the results.

The aforementioned issue is reflected in the recorded EEG
data. The analysis revealed large variations across the par-
ticipants’ ability to produce consistent changes in their neural
rhythms during MI. After averaging the lateralized ERD time-
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course for all the participants in the group, the decrease in the
band power is clearly visible in the plot, as well as the dif-
ferences between the groups (Figure 7). High variability in
the ERD strength probably accounted for the non-significance
in the statistical testing for the effects of group on the ERD
strength. The between-group difference in the ERD strength
(i.e., in the spectral power before and during the MI trial) for
the training phase (where no feedback was presented yet) can
be observed clearly from the ERD grand average plots. It there-
fore seems that motor action observation indeed has an effect on
the initial ERD production during MI, helping to generate more
quality data for the initial classifier training. On the other hand,
the ERDs obtained in the last phase of the experiment clearly
are not generated by mere motor action observation, as the mo-
tor actions of the avatar were conditioned by successful MI in
the evaluation phase.

An objective of this research was to study the level of em-
bodiment into the body of a virtual avatar. Markedly positive
SoO was subjectively felt by 50% of the participants (without
an effect of the assigned group). This suggests rather weak in-
duction of the rubber hand-like illusion using the virtual hands.
Closer look at the group of the embodied participants shows that
they gave a significantly higher SoA rating to the experimental
environment and had non-significantly higher evaluation score.
Therefore, although we can not confirm the influence of the per-
ceived SoO on the score, the stronger feelings of ownership to-
wards the virtual body go hand in hand with the agency towards
the BCI-mediated actions. Potential aim for the future work oc-
curs; development of VR environments that allow more people
to be immersed into, and consequently to become embodied to
the associated avatars as well. This will allow more detailed ex-
ploration of the effects of embodiment to MI-BCI performance.

Our results suggest that the chosen training modality influ-
ences the performance more than the subjective level of embod-
iment does. The VR training environment can facilitate more
rapid training resulting in a higher evaluation score after two
phases of training. Although some of the participants were im-
mersed to the body of the VR avatar, that was not the critical
factor for the higher score. After the training for MI-BCI in the
virtual environment, even the participants who did not feel own-
ership of the avatar’s body in the evaluation phase scored better
than the participants trained with symbolic training. In general,
performance in MI-BCI is affected by number of factors falling
into category of the personality profile and cognitive traits of
the user [68]. An important aspect may be the locus of control
(personal belief in the degree of controlling the outcomes of the
events in her/his life), that has been shown to correlate with the
MI-BCI performance [69]. In similar fashion, the gathered SoO
and SoA values might be influenced by the personality of each
participant, as they were collected by questionnaires. The ef-
fect of the embodiment needs to be studied more thoroughly.
Higher score after the VR training may be simply caused by an
improved visual appearance used for the feedback presentation.
The training process was facilitated by encoding the feedback
into the actions of the avatar – no matter if the participant actu-
ally became embodied into its body, or not.

The broad topic of improvements to the MI-BCI training pro-

tocol is discussed in the work of Lotte et al. (2013) [7]. We
decided to adapt some points that were applicable to the design
of our study; e.g., giving the periods of pre-training to partici-
pants, providing a positive-only feedback in the training. It has
been shown that the first stages of training benefit from positive
feedback only [70]. The feedback in the VR training environ-
ment should also induce feelings of competence in participants,
directly influencing the motivation in a positive way, as sug-
gested in [71]. The VR training environment design allows to
blur the line between the training and the subsequent applica-
tion of an MI-BCI system – the training environment can be
only slightly modified to become an application environment
for a desired BCI task [7]. Avatar is the only necessary element
of the scene, the rest might change according to the real-word
application needs. On the other hand, even complementary ap-
proach could bring interesting results – testing the persistence
of skills learned during the embodied VR MI-BCI training in
further sessions, without the use of VR. After sufficient amount
of training is completed, feedback is not really necessary for the
participant, and it is possible that the VR encapsulation could
be removed without causing a drop in user performance (accu-
racy).

We did not establish the link between the temperature drop
in participants’ hands and the reported SoO. This is in line
with [31], showing evidence against cooling of the hands dur-
ing the RHI. Our work supports this evidence for the case of the
MI-BCI-induced virtual hand illusion.

Development of more immersive VR training environments
is necessary for the future of this research direction. The hand
movement in the training and evaluation tasks was chosen based
on the high number of muscles engaged in the execution, its
range (and associated duration), and the continuous nature (al-
lowing continuous MI feedback, which has been shown to be
more effective for learning [72]). On the other hand, it can be
argued that movements incorporating the hand only (i.e., fin-
gers, palm; without an arm movement) could produce a higher
SoO, as the overall bodily position would change less. Higher
resemblance to the original RHI would be kept as well, as par-
ticipants do not move at all in the RHI, and to produce the illu-
sion, only their fingers are stimulated with touch.

6. Conclusions and Future work

We presented a novel embodied VR environment for MI-BCI
training based on a gender-matched human-like avatar carrying
out motor actions in synchrony with the participants’ MI. The
hand movements of the avatar serve as a feedback on MI tri-
als, guiding the user throughout the training process, instead of
the symbolic visual guidance commonly used in the MI-BCI
training protocol. To validate the method, user study (N=30)
was conducted; the experimental group performed embodied
VR training for MI-BCI (N=15), while the control group per-
formed the training using standard Graz protocol (symbolic in-
structions on a standard computer screen).

Results indicate better acceptance of the embodied VR train-
ing. Participants in the experimental group gained significantly
higher score (actual accuracy calculated on-line in the evalua-
tion phase of the experiment).
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Our VR training environment is based on the principles of
embodiment into a VR avatar’s body, to facilitate consistent
learning of the MI skills in new trainees. Significant results in
terms of objective measures were gathered despite the fact that
not all of the participants in the experimental group felt a strong
sense of ownership towards the virtual hands that mediated the
training.

In the future, we will create more virtual training scenarios
(3D scenes). Left and right hand MI will be kept, but the vi-
sual instructions will be composed of various different hand
motions throughout the training session. This could potentially
bring more robust learning [73, 7]. Multimodal stimulus pre-
sentation has been shown to be beneficial for MI-BCI training
as well. VR environment enriched with haptic feedback pro-
duced promising results in terms of the classification accuracy
during the initial training session for MI-BCIs in the work of
Vourvopoulos et al. (2016) [74]. Although SoO and SoA were
not studied, the training modality helped in acceleration of the
training with mechanisms similar to this work.

Most importantly, the next steps in the research on embodied
MI-BCI training must follow the needs of the participant in the
training process, mainly addressing the issue with a decreasing
motivation. Even though the VR environment created for this
study was more engaging to the participants than the symbolic
training modality, the training still lacked any engaging tasks
to follow. Next iteration of our training environment design
will be inspired by games and will incorporate game-like tasks
and visible score keeping. This, together with breaking from
the steady pace of the training procedure in favor of more user-
oriented approach, promises to significantly reduce the training
time for the future MI-BCI users. [68, 60].
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